Metamath Proof Explorer


Theorem legid

Description: Reflexivity of the less-than relationship. Proposition 5.7 of Schwabhauser p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019)

Ref Expression
Hypotheses legval.p P = Base G
legval.d - ˙ = dist G
legval.i I = Itv G
legval.l ˙ = 𝒢 G
legval.g φ G 𝒢 Tarski
legid.a φ A P
legid.b φ B P
Assertion legid φ A - ˙ B ˙ A - ˙ B

Proof

Step Hyp Ref Expression
1 legval.p P = Base G
2 legval.d - ˙ = dist G
3 legval.i I = Itv G
4 legval.l ˙ = 𝒢 G
5 legval.g φ G 𝒢 Tarski
6 legid.a φ A P
7 legid.b φ B P
8 1 2 3 5 6 7 tgbtwntriv2 φ B A I B
9 eqidd φ A - ˙ B = A - ˙ B
10 eleq1 x = B x A I B B A I B
11 oveq2 x = B A - ˙ x = A - ˙ B
12 11 eqeq2d x = B A - ˙ B = A - ˙ x A - ˙ B = A - ˙ B
13 10 12 anbi12d x = B x A I B A - ˙ B = A - ˙ x B A I B A - ˙ B = A - ˙ B
14 13 rspcev B P B A I B A - ˙ B = A - ˙ B x P x A I B A - ˙ B = A - ˙ x
15 7 8 9 14 syl12anc φ x P x A I B A - ˙ B = A - ˙ x
16 1 2 3 4 5 6 7 6 7 legov φ A - ˙ B ˙ A - ˙ B x P x A I B A - ˙ B = A - ˙ x
17 15 16 mpbird φ A - ˙ B ˙ A - ˙ B