Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|
2 |
|
legval.d |
|
3 |
|
legval.i |
|
4 |
|
legval.l |
|
5 |
|
legval.g |
|
6 |
|
legov.a |
|
7 |
|
legov.b |
|
8 |
|
legov.c |
|
9 |
|
legov.d |
|
10 |
1 2 3 4 5
|
legval |
|
11 |
10
|
breqd |
|
12 |
|
ovex |
|
13 |
|
ovex |
|
14 |
|
simpr |
|
15 |
14
|
eqeq1d |
|
16 |
|
simpl |
|
17 |
16
|
eqeq1d |
|
18 |
17
|
anbi2d |
|
19 |
18
|
rexbidv |
|
20 |
15 19
|
anbi12d |
|
21 |
20
|
2rexbidv |
|
22 |
|
eqid |
|
23 |
12 13 21 22
|
braba |
|
24 |
11 23
|
bitrdi |
|
25 |
|
anass |
|
26 |
25
|
anbi1i |
|
27 |
|
eqid |
|
28 |
5
|
ad5antr |
|
29 |
28
|
adantr |
|
30 |
|
simp-5r |
|
31 |
30
|
adantr |
|
32 |
|
simpllr |
|
33 |
|
simp-4r |
|
34 |
33
|
adantr |
|
35 |
8
|
ad5antr |
|
36 |
35
|
adantr |
|
37 |
|
simprl |
|
38 |
9
|
ad5antr |
|
39 |
38
|
adantr |
|
40 |
|
simprr |
|
41 |
1 2 3 27 29 31 34 32 36 39 37 40
|
cgr3swap23 |
|
42 |
|
simprl |
|
43 |
42
|
adantr |
|
44 |
1 2 3 27 29 31 32 34 36 37 39 41 43
|
tgbtwnxfr |
|
45 |
|
simplrr |
|
46 |
1 2 3 27 29 31 32 34 36 37 39 41
|
cgr3simp1 |
|
47 |
45 46
|
eqtrd |
|
48 |
44 47
|
jca |
|
49 |
|
eqid |
|
50 |
|
simplr |
|
51 |
1 49 3 28 30 50 33 42
|
btwncolg3 |
|
52 |
|
simpllr |
|
53 |
52
|
eqcomd |
|
54 |
1 49 3 28 30 33 50 27 35 38 2 51 53
|
lnext |
|
55 |
48 54
|
reximddv |
|
56 |
55
|
adantllr |
|
57 |
26 56
|
sylanbr |
|
58 |
|
simprr |
|
59 |
|
eleq1w |
|
60 |
|
oveq2 |
|
61 |
60
|
eqeq2d |
|
62 |
59 61
|
anbi12d |
|
63 |
62
|
cbvrexvw |
|
64 |
58 63
|
sylibr |
|
65 |
57 64
|
r19.29a |
|
66 |
65
|
adantl3r |
|
67 |
|
simpr |
|
68 |
|
oveq1 |
|
69 |
68
|
eqeq2d |
|
70 |
|
oveq1 |
|
71 |
70
|
eleq2d |
|
72 |
|
oveq1 |
|
73 |
72
|
eqeq2d |
|
74 |
71 73
|
anbi12d |
|
75 |
74
|
rexbidv |
|
76 |
69 75
|
anbi12d |
|
77 |
|
oveq2 |
|
78 |
77
|
eqeq2d |
|
79 |
|
oveq2 |
|
80 |
79
|
eleq2d |
|
81 |
80
|
anbi1d |
|
82 |
81
|
rexbidv |
|
83 |
78 82
|
anbi12d |
|
84 |
76 83
|
cbvrex2vw |
|
85 |
67 84
|
sylibr |
|
86 |
66 85
|
r19.29vva |
|
87 |
8
|
adantr |
|
88 |
9
|
adantr |
|
89 |
|
eqidd |
|
90 |
|
simpr |
|
91 |
|
oveq1 |
|
92 |
91
|
eqeq2d |
|
93 |
|
oveq1 |
|
94 |
93
|
eleq2d |
|
95 |
|
oveq1 |
|
96 |
95
|
eqeq2d |
|
97 |
94 96
|
anbi12d |
|
98 |
97
|
rexbidv |
|
99 |
92 98
|
anbi12d |
|
100 |
|
oveq2 |
|
101 |
100
|
eqeq2d |
|
102 |
|
oveq2 |
|
103 |
102
|
eleq2d |
|
104 |
103
|
anbi1d |
|
105 |
104
|
rexbidv |
|
106 |
101 105
|
anbi12d |
|
107 |
99 106
|
rspc2ev |
|
108 |
87 88 89 90 107
|
syl112anc |
|
109 |
86 108
|
impbida |
|
110 |
24 109
|
bitrd |
|