| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
|
| 2 |
|
legval.d |
|
| 3 |
|
legval.i |
|
| 4 |
|
legval.l |
|
| 5 |
|
legval.g |
|
| 6 |
|
legid.a |
|
| 7 |
|
legid.b |
|
| 8 |
|
legtrd.c |
|
| 9 |
|
legtrd.d |
|
| 10 |
|
legtrd.e |
|
| 11 |
|
legtrd.f |
|
| 12 |
|
legtrd.1 |
|
| 13 |
|
legtrd.2 |
|
| 14 |
|
eqid |
|
| 15 |
5
|
ad4antr |
|
| 16 |
8
|
ad4antr |
|
| 17 |
9
|
ad4antr |
|
| 18 |
|
simp-4r |
|
| 19 |
|
eqid |
|
| 20 |
10
|
ad4antr |
|
| 21 |
|
simplr |
|
| 22 |
|
simpllr |
|
| 23 |
22
|
simpld |
|
| 24 |
1 14 3 15 16 18 17 23
|
btwncolg3 |
|
| 25 |
|
simprr |
|
| 26 |
1 14 3 15 16 17 18 19 20 21 2 24 25
|
lnext |
|
| 27 |
15
|
ad2antrr |
|
| 28 |
20
|
ad2antrr |
|
| 29 |
|
simplr |
|
| 30 |
|
simp-4r |
|
| 31 |
11
|
ad6antr |
|
| 32 |
16
|
ad2antrr |
|
| 33 |
18
|
ad2antrr |
|
| 34 |
17
|
ad2antrr |
|
| 35 |
|
simpr |
|
| 36 |
1 2 3 19 27 32 34 33 28 30 29 35
|
cgr3swap23 |
|
| 37 |
23
|
ad2antrr |
|
| 38 |
1 2 3 19 27 32 33 34 28 29 30 36 37
|
tgbtwnxfr |
|
| 39 |
|
simpllr |
|
| 40 |
39
|
simpld |
|
| 41 |
1 2 3 27 28 29 30 31 38 40
|
tgbtwnexch |
|
| 42 |
|
simp-5r |
|
| 43 |
42
|
simprd |
|
| 44 |
1 2 3 19 27 32 33 34 28 29 30 36
|
cgr3simp1 |
|
| 45 |
43 44
|
eqtrd |
|
| 46 |
41 45
|
jca |
|
| 47 |
46
|
ex |
|
| 48 |
47
|
reximdva |
|
| 49 |
26 48
|
mpd |
|
| 50 |
1 2 3 4 5 8 9 10 11
|
legov |
|
| 51 |
13 50
|
mpbid |
|
| 52 |
51
|
ad2antrr |
|
| 53 |
49 52
|
r19.29a |
|
| 54 |
1 2 3 4 5 6 7 8 9
|
legov |
|
| 55 |
12 54
|
mpbid |
|
| 56 |
53 55
|
r19.29a |
|
| 57 |
1 2 3 4 5 6 7 10 11
|
legov |
|
| 58 |
56 57
|
mpbird |
|