Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|
2 |
|
legval.d |
|
3 |
|
legval.i |
|
4 |
|
legval.l |
|
5 |
|
legval.g |
|
6 |
|
legid.a |
|
7 |
|
legid.b |
|
8 |
|
legtrd.c |
|
9 |
|
legtrd.d |
|
10 |
|
legtrd.e |
|
11 |
|
legtrd.f |
|
12 |
|
legtrd.1 |
|
13 |
|
legtrd.2 |
|
14 |
|
eqid |
|
15 |
5
|
ad4antr |
|
16 |
8
|
ad4antr |
|
17 |
9
|
ad4antr |
|
18 |
|
simp-4r |
|
19 |
|
eqid |
|
20 |
10
|
ad4antr |
|
21 |
|
simplr |
|
22 |
|
simpllr |
|
23 |
22
|
simpld |
|
24 |
1 14 3 15 16 18 17 23
|
btwncolg3 |
|
25 |
|
simprr |
|
26 |
1 14 3 15 16 17 18 19 20 21 2 24 25
|
lnext |
|
27 |
15
|
ad2antrr |
|
28 |
20
|
ad2antrr |
|
29 |
|
simplr |
|
30 |
|
simp-4r |
|
31 |
11
|
ad6antr |
|
32 |
16
|
ad2antrr |
|
33 |
18
|
ad2antrr |
|
34 |
17
|
ad2antrr |
|
35 |
|
simpr |
|
36 |
1 2 3 19 27 32 34 33 28 30 29 35
|
cgr3swap23 |
|
37 |
23
|
ad2antrr |
|
38 |
1 2 3 19 27 32 33 34 28 29 30 36 37
|
tgbtwnxfr |
|
39 |
|
simpllr |
|
40 |
39
|
simpld |
|
41 |
1 2 3 27 28 29 30 31 38 40
|
tgbtwnexch |
|
42 |
|
simp-5r |
|
43 |
42
|
simprd |
|
44 |
1 2 3 19 27 32 33 34 28 29 30 36
|
cgr3simp1 |
|
45 |
43 44
|
eqtrd |
|
46 |
41 45
|
jca |
|
47 |
46
|
ex |
|
48 |
47
|
reximdva |
|
49 |
26 48
|
mpd |
|
50 |
1 2 3 4 5 8 9 10 11
|
legov |
|
51 |
13 50
|
mpbid |
|
52 |
51
|
ad2antrr |
|
53 |
49 52
|
r19.29a |
|
54 |
1 2 3 4 5 6 7 8 9
|
legov |
|
55 |
12 54
|
mpbid |
|
56 |
53 55
|
r19.29a |
|
57 |
1 2 3 4 5 6 7 10 11
|
legov |
|
58 |
56 57
|
mpbird |
|