Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|
2 |
|
legval.d |
|
3 |
|
legval.i |
|
4 |
|
legval.l |
|
5 |
|
legval.g |
|
6 |
|
legid.a |
|
7 |
|
legid.b |
|
8 |
|
legtrd.c |
|
9 |
|
legtrd.d |
|
10 |
|
legtri3.1 |
|
11 |
|
legtri3.2 |
|
12 |
|
simpllr |
|
13 |
12
|
simprd |
|
14 |
5
|
ad4antr |
|
15 |
|
simp-4r |
|
16 |
9
|
ad4antr |
|
17 |
8
|
ad4antr |
|
18 |
12
|
simpld |
|
19 |
1 2 3 14 17 15 16 18
|
tgbtwncom |
|
20 |
|
simpr |
|
21 |
20
|
simpld |
|
22 |
|
simplr |
|
23 |
7
|
ad4antr |
|
24 |
6
|
ad4antr |
|
25 |
1 2 3 14 17 16 22 21
|
tgbtwncom |
|
26 |
1 2 3 14 22 16 15 17 25 19
|
tgbtwnexch2 |
|
27 |
1 2 3 14 23 24
|
tgbtwntriv1 |
|
28 |
20
|
simprd |
|
29 |
1 2 3 14 17 22 24 23 28
|
tgcgrcomlr |
|
30 |
13
|
eqcomd |
|
31 |
1 2 3 14 17 15 24 23 30
|
tgcgrcomlr |
|
32 |
1 2 3 14 22 15 17 23 23 24 26 27 29 31
|
tgcgrsub |
|
33 |
1 2 3 14 22 15 23 32
|
axtgcgrid |
|
34 |
33
|
oveq2d |
|
35 |
21 34
|
eleqtrd |
|
36 |
1 2 3 14 17 16 15 35
|
tgbtwncom |
|
37 |
1 2 3 14 15 16 17 19 36
|
tgbtwnswapid |
|
38 |
37
|
oveq2d |
|
39 |
13 38
|
eqtrd |
|
40 |
1 2 3 4 5 8 9 6 7
|
legov2 |
|
41 |
11 40
|
mpbid |
|
42 |
41
|
ad2antrr |
|
43 |
39 42
|
r19.29a |
|
44 |
1 2 3 4 5 6 7 8 9
|
legov |
|
45 |
10 44
|
mpbid |
|
46 |
43 45
|
r19.29a |
|