Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|
2 |
|
legval.d |
|
3 |
|
legval.i |
|
4 |
|
legval.l |
|
5 |
|
legval.g |
|
6 |
|
legid.a |
|
7 |
|
legid.b |
|
8 |
|
legtrd.c |
|
9 |
|
legtrd.d |
|
10 |
5
|
adantr |
|
11 |
6
|
adantr |
|
12 |
7
|
adantr |
|
13 |
1 2 3 4 10 11 12
|
legid |
|
14 |
8
|
adantr |
|
15 |
|
simpr |
|
16 |
9
|
adantr |
|
17 |
1 2 3 10 11 12 14 15 16
|
tgldim0cgr |
|
18 |
13 17
|
breqtrd |
|
19 |
18
|
orcd |
|
20 |
5
|
ad3antrrr |
|
21 |
|
simplr |
|
22 |
21
|
adantr |
|
23 |
6
|
ad3antrrr |
|
24 |
7
|
ad3antrrr |
|
25 |
|
simprl |
|
26 |
|
simplrr |
|
27 |
26
|
necomd |
|
28 |
|
simplrl |
|
29 |
1 2 3 20 24 23 22 28
|
tgbtwncom |
|
30 |
|
simprrl |
|
31 |
1 3 20 22 23 24 25 27 29 30
|
tgbtwnconn2 |
|
32 |
|
simprrr |
|
33 |
31 32
|
jca |
|
34 |
5
|
ad2antrr |
|
35 |
6
|
ad2antrr |
|
36 |
8
|
ad2antrr |
|
37 |
9
|
ad2antrr |
|
38 |
1 2 3 34 21 35 36 37
|
axtgsegcon |
|
39 |
33 38
|
reximddv |
|
40 |
39
|
adantllr |
|
41 |
5
|
adantr |
|
42 |
7
|
adantr |
|
43 |
6
|
adantr |
|
44 |
|
simpr |
|
45 |
1 2 3 41 42 43 44
|
tgbtwndiff |
|
46 |
40 45
|
r19.29a |
|
47 |
|
andir |
|
48 |
|
eqcom |
|
49 |
48
|
anbi2i |
|
50 |
49
|
orbi2i |
|
51 |
47 50
|
bitri |
|
52 |
51
|
rexbii |
|
53 |
|
r19.43 |
|
54 |
52 53
|
bitri |
|
55 |
46 54
|
sylib |
|
56 |
1 2 3 4 5 6 7 8 9
|
legov2 |
|
57 |
1 2 3 4 5 8 9 6 7
|
legov |
|
58 |
56 57
|
orbi12d |
|
59 |
58
|
adantr |
|
60 |
55 59
|
mpbird |
|
61 |
1 6
|
tgldimor |
|
62 |
19 60 61
|
mpjaodan |
|