Metamath Proof Explorer


Theorem leibpilem1

Description: Lemma for leibpi . (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by Steven Nguyen, 23-Mar-2023)

Ref Expression
Assertion leibpilem1 N 0 ¬ N = 0 ¬ 2 N N N 1 2 0

Proof

Step Hyp Ref Expression
1 nn0onn N 0 ¬ 2 N N
2 nn0oddm1d2 N 0 ¬ 2 N N 1 2 0
3 2 biimpa N 0 ¬ 2 N N 1 2 0
4 1 3 jca N 0 ¬ 2 N N N 1 2 0
5 4 adantrl N 0 ¬ N = 0 ¬ 2 N N N 1 2 0