Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
leid
Next ⟩
ltne
Metamath Proof Explorer
Ascii
Unicode
Theorem
leid
Description:
'Less than or equal to' is reflexive.
(Contributed by
NM
, 18-Aug-1999)
Ref
Expression
Assertion
leid
⊢
A
∈
ℝ
→
A
≤
A
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
A
=
A
2
1
olci
⊢
A
<
A
∨
A
=
A
3
leloe
⊢
A
∈
ℝ
∧
A
∈
ℝ
→
A
≤
A
↔
A
<
A
∨
A
=
A
4
2
3
mpbiri
⊢
A
∈
ℝ
∧
A
∈
ℝ
→
A
≤
A
5
4
anidms
⊢
A
∈
ℝ
→
A
≤
A