Metamath Proof Explorer


Theorem leisorel

Description: Version of isorel for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015) (Revised by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion leisorel F Isom < , < A B A * B * C A D A C D F C F D

Proof

Step Hyp Ref Expression
1 leiso A * B * F Isom < , < A B F Isom , A B
2 1 biimpcd F Isom < , < A B A * B * F Isom , A B
3 isorel F Isom , A B C A D A C D F C F D
4 3 ex F Isom , A B C A D A C D F C F D
5 2 4 syl6 F Isom < , < A B A * B * C A D A C D F C F D
6 5 3imp F Isom < , < A B A * B * C A D A C D F C F D