Metamath Proof Explorer


Theorem lejoin2

Description: A join's second argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011)

Ref Expression
Hypotheses joinval2.b B = Base K
joinval2.l ˙ = K
joinval2.j ˙ = join K
joinval2.k φ K V
joinval2.x φ X B
joinval2.y φ Y B
joinlem.e φ X Y dom ˙
Assertion lejoin2 φ Y ˙ X ˙ Y

Proof

Step Hyp Ref Expression
1 joinval2.b B = Base K
2 joinval2.l ˙ = K
3 joinval2.j ˙ = join K
4 joinval2.k φ K V
5 joinval2.x φ X B
6 joinval2.y φ Y B
7 joinlem.e φ X Y dom ˙
8 1 2 3 4 5 6 7 joinlem φ X ˙ X ˙ Y Y ˙ X ˙ Y z B X ˙ z Y ˙ z X ˙ Y ˙ z
9 8 simplrd φ Y ˙ X ˙ Y