Metamath Proof Explorer


Theorem leloed

Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
Assertion leloed φ A B A < B A = B

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 leloe A B A B A < B A = B
4 1 2 3 syl2anc φ A B A < B A = B