Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
leltadd
Next ⟩
lt2add
Metamath Proof Explorer
Ascii
Unicode
Theorem
leltadd
Description:
Adding both sides of two orderings.
(Contributed by
NM
, 15-Aug-2008)
Ref
Expression
Assertion
leltadd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
D
∈
ℝ
→
A
≤
C
∧
B
<
D
→
A
+
B
<
C
+
D
Proof
Step
Hyp
Ref
Expression
1
ltleadd
⊢
B
∈
ℝ
∧
A
∈
ℝ
∧
D
∈
ℝ
∧
C
∈
ℝ
→
B
<
D
∧
A
≤
C
→
B
+
A
<
D
+
C
2
1
ancomsd
⊢
B
∈
ℝ
∧
A
∈
ℝ
∧
D
∈
ℝ
∧
C
∈
ℝ
→
A
≤
C
∧
B
<
D
→
B
+
A
<
D
+
C
3
2
ancom2s
⊢
B
∈
ℝ
∧
A
∈
ℝ
∧
C
∈
ℝ
∧
D
∈
ℝ
→
A
≤
C
∧
B
<
D
→
B
+
A
<
D
+
C
4
3
ancom1s
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
D
∈
ℝ
→
A
≤
C
∧
B
<
D
→
B
+
A
<
D
+
C
5
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
6
recn
⊢
B
∈
ℝ
→
B
∈
ℂ
7
addcom
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
+
B
=
B
+
A
8
5
6
7
syl2an
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
+
B
=
B
+
A
9
recn
⊢
C
∈
ℝ
→
C
∈
ℂ
10
recn
⊢
D
∈
ℝ
→
D
∈
ℂ
11
addcom
⊢
C
∈
ℂ
∧
D
∈
ℂ
→
C
+
D
=
D
+
C
12
9
10
11
syl2an
⊢
C
∈
ℝ
∧
D
∈
ℝ
→
C
+
D
=
D
+
C
13
8
12
breqan12d
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
D
∈
ℝ
→
A
+
B
<
C
+
D
↔
B
+
A
<
D
+
C
14
4
13
sylibrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
D
∈
ℝ
→
A
≤
C
∧
B
<
D
→
A
+
B
<
C
+
D