Metamath Proof Explorer


Theorem leltletr

Description: Transitive law, weaker form of lelttr . (Contributed by AV, 14-Oct-2018)

Ref Expression
Assertion leltletr A B C A B B < C A C

Proof

Step Hyp Ref Expression
1 3simpb A B C A C
2 lelttr A B C A B B < C A < C
3 ltle A C A < C A C
4 1 2 3 sylsyld A B C A B B < C A C