Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
General auxiliary theorems (2)
Ordering on reals - extension
leltletr
Next ⟩
Subtraction - extension
Metamath Proof Explorer
Ascii
Unicode
Theorem
leltletr
Description:
Transitive law, weaker form of
lelttr
.
(Contributed by
AV
, 14-Oct-2018)
Ref
Expression
Assertion
leltletr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
≤
B
∧
B
<
C
→
A
≤
C
Proof
Step
Hyp
Ref
Expression
1
3simpb
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
∈
ℝ
∧
C
∈
ℝ
2
lelttr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
≤
B
∧
B
<
C
→
A
<
C
3
ltle
⊢
A
∈
ℝ
∧
C
∈
ℝ
→
A
<
C
→
A
≤
C
4
1
2
3
sylsyld
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
≤
B
∧
B
<
C
→
A
≤
C