Metamath Proof Explorer


Theorem leltne

Description: 'Less than or equal to' implies 'less than' is not 'equals'. (Contributed by NM, 27-Jul-1999)

Ref Expression
Assertion leltne A B A B A < B B A

Proof

Step Hyp Ref Expression
1 lttri3 A B A = B ¬ A < B ¬ B < A
2 simpl ¬ A < B ¬ B < A ¬ A < B
3 1 2 syl6bi A B A = B ¬ A < B
4 3 adantr A B A B A = B ¬ A < B
5 leloe A B A B A < B A = B
6 5 biimpa A B A B A < B A = B
7 6 ord A B A B ¬ A < B A = B
8 4 7 impbid A B A B A = B ¬ A < B
9 8 necon2abid A B A B A < B A B
10 necom B A A B
11 9 10 bitr4di A B A B A < B B A
12 11 3impa A B A B A < B B A