Metamath Proof Explorer


Theorem lelttrd

Description: Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
letrd.3 φ C
lelttrd.4 φ A B
lelttrd.5 φ B < C
Assertion lelttrd φ A < C

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 letrd.3 φ C
4 lelttrd.4 φ A B
5 lelttrd.5 φ B < C
6 lelttr A B C A B B < C A < C
7 1 2 3 6 syl3anc φ A B B < C A < C
8 4 5 7 mp2and φ A < C