Metamath Proof Explorer


Theorem lelttri

Description: 'Less than or equal to', 'less than' transitive law. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt.1 A
lt.2 B
lt.3 C
Assertion lelttri A B B < C A < C

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 lt.3 C
4 lelttr A B C A B B < C A < C
5 1 2 3 4 mp3an A B B < C A < C