Metamath Proof Explorer


Theorem lemaxle

Description: A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021)

Ref Expression
Assertion lemaxle B C A A B A if C B B C

Proof

Step Hyp Ref Expression
1 max2 C B B if C B B C
2 1 ancoms B C B if C B B C
3 2 adantr B C A B if C B B C
4 simpr B C A A
5 simpll B C A B
6 ifcl B C if C B B C
7 6 adantr B C A if C B B C
8 letr A B if C B B C A B B if C B B C A if C B B C
9 4 5 7 8 syl3anc B C A A B B if C B B C A if C B B C
10 3 9 mpan2d B C A A B A if C B B C
11 10 3impia B C A A B A if C B B C