Metamath Proof Explorer


Theorem lemul12a

Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008)

Ref Expression
Assertion lemul12a A 0 A B C 0 C D A B C D A C B D

Proof

Step Hyp Ref Expression
1 simpll A 0 A B C 0 C D A B C D A 0 A B
2 simpll C 0 C D C
3 2 ad2antlr A 0 A B C 0 C D A B C D C
4 simplrr A 0 A B C 0 C D A B C D D
5 0re 0
6 letr 0 C D 0 C C D 0 D
7 5 6 mp3an1 C D 0 C C D 0 D
8 7 exp4b C D 0 C C D 0 D
9 8 com23 C 0 C D C D 0 D
10 9 imp41 C 0 C D C D 0 D
11 10 ad2ant2l A 0 A B C 0 C D A B C D 0 D
12 4 11 jca A 0 A B C 0 C D A B C D D 0 D
13 1 3 12 jca32 A 0 A B C 0 C D A B C D A 0 A B C D 0 D
14 simpr A 0 A B C 0 C D A B C D A B C D
15 lemul12b A 0 A B C D 0 D A B C D A C B D
16 13 14 15 sylc A 0 A B C 0 C D A B C D A C B D
17 16 ex A 0 A B C 0 C D A B C D A C B D