Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
lemul12a
Next ⟩
mulgt1
Metamath Proof Explorer
Ascii
Unicode
Theorem
lemul12a
Description:
Comparison of product of two nonnegative numbers.
(Contributed by
NM
, 22-Feb-2008)
Ref
Expression
Assertion
lemul12a
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
→
A
≤
B
∧
C
≤
D
→
A
⁢
C
≤
B
⁢
D
Proof
Step
Hyp
Ref
Expression
1
simpll
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
∧
A
≤
B
∧
C
≤
D
→
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
2
simpll
⊢
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
→
C
∈
ℝ
3
2
ad2antlr
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
∧
A
≤
B
∧
C
≤
D
→
C
∈
ℝ
4
simplrr
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
∧
A
≤
B
∧
C
≤
D
→
D
∈
ℝ
5
0re
⊢
0
∈
ℝ
6
letr
⊢
0
∈
ℝ
∧
C
∈
ℝ
∧
D
∈
ℝ
→
0
≤
C
∧
C
≤
D
→
0
≤
D
7
5
6
mp3an1
⊢
C
∈
ℝ
∧
D
∈
ℝ
→
0
≤
C
∧
C
≤
D
→
0
≤
D
8
7
exp4b
⊢
C
∈
ℝ
→
D
∈
ℝ
→
0
≤
C
→
C
≤
D
→
0
≤
D
9
8
com23
⊢
C
∈
ℝ
→
0
≤
C
→
D
∈
ℝ
→
C
≤
D
→
0
≤
D
10
9
imp41
⊢
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
∧
C
≤
D
→
0
≤
D
11
10
ad2ant2l
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
∧
A
≤
B
∧
C
≤
D
→
0
≤
D
12
4
11
jca
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
∧
A
≤
B
∧
C
≤
D
→
D
∈
ℝ
∧
0
≤
D
13
1
3
12
jca32
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
∧
A
≤
B
∧
C
≤
D
→
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
D
∈
ℝ
∧
0
≤
D
14
simpr
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
∧
A
≤
B
∧
C
≤
D
→
A
≤
B
∧
C
≤
D
15
lemul12b
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
D
∈
ℝ
∧
0
≤
D
→
A
≤
B
∧
C
≤
D
→
A
⁢
C
≤
B
⁢
D
16
13
14
15
sylc
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
∧
A
≤
B
∧
C
≤
D
→
A
⁢
C
≤
B
⁢
D
17
16
ex
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
≤
C
∧
D
∈
ℝ
→
A
≤
B
∧
C
≤
D
→
A
⁢
C
≤
B
⁢
D