Metamath Proof Explorer


Theorem lemul12ad

Description: Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1 φ A
divgt0d.2 φ B
lemul1ad.3 φ C
ltmul12ad.3 φ D
lemul12ad.4 φ 0 A
lemul12ad.5 φ 0 C
lemul12ad.6 φ A B
lemul12ad.7 φ C D
Assertion lemul12ad φ A C B D

Proof

Step Hyp Ref Expression
1 ltp1d.1 φ A
2 divgt0d.2 φ B
3 lemul1ad.3 φ C
4 ltmul12ad.3 φ D
5 lemul12ad.4 φ 0 A
6 lemul12ad.5 φ 0 C
7 lemul12ad.6 φ A B
8 lemul12ad.7 φ C D
9 1 5 jca φ A 0 A
10 3 6 jca φ C 0 C
11 lemul12a A 0 A B C 0 C D A B C D A C B D
12 9 2 10 4 11 syl22anc φ A B C D A C B D
13 7 8 12 mp2and φ A C B D