Metamath Proof Explorer


Theorem lemul12b

Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008)

Ref Expression
Assertion lemul12b A 0 A B C D 0 D A B C D A C B D

Proof

Step Hyp Ref Expression
1 lemul2a C D A 0 A C D A C A D
2 1 ex C D A 0 A C D A C A D
3 2 3comr A 0 A C D C D A C A D
4 3 3expb A 0 A C D C D A C A D
5 4 adantrrr A 0 A C D 0 D C D A C A D
6 5 adantlr A 0 A B C D 0 D C D A C A D
7 lemul1a A B D 0 D A B A D B D
8 7 ex A B D 0 D A B A D B D
9 8 ad4ant134 A 0 A B D 0 D A B A D B D
10 9 adantrl A 0 A B C D 0 D A B A D B D
11 6 10 anim12d A 0 A B C D 0 D C D A B A C A D A D B D
12 11 ancomsd A 0 A B C D 0 D A B C D A C A D A D B D
13 remulcl A C A C
14 13 adantlr A 0 A C A C
15 14 ad2ant2r A 0 A B C D 0 D A C
16 remulcl A D A D
17 16 ad2ant2r A 0 A D 0 D A D
18 17 ad2ant2rl A 0 A B C D 0 D A D
19 remulcl B D B D
20 19 adantrr B D 0 D B D
21 20 ad2ant2l A 0 A B C D 0 D B D
22 letr A C A D B D A C A D A D B D A C B D
23 15 18 21 22 syl3anc A 0 A B C D 0 D A C A D A D B D A C B D
24 12 23 syld A 0 A B C D 0 D A B C D A C B D