Metamath Proof Explorer


Theorem lemul1a

Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by NM, 21-Feb-2005)

Ref Expression
Assertion lemul1a A B C 0 C A B A C B C

Proof

Step Hyp Ref Expression
1 0re 0
2 leloe 0 C 0 C 0 < C 0 = C
3 1 2 mpan C 0 C 0 < C 0 = C
4 3 pm5.32i C 0 C C 0 < C 0 = C
5 lemul1 A B C 0 < C A B A C B C
6 5 biimpd A B C 0 < C A B A C B C
7 6 3expia A B C 0 < C A B A C B C
8 7 com12 C 0 < C A B A B A C B C
9 1 leidi 0 0
10 recn A A
11 10 mul01d A A 0 = 0
12 recn B B
13 12 mul01d B B 0 = 0
14 11 13 breqan12d A B A 0 B 0 0 0
15 9 14 mpbiri A B A 0 B 0
16 oveq2 0 = C A 0 = A C
17 oveq2 0 = C B 0 = B C
18 16 17 breq12d 0 = C A 0 B 0 A C B C
19 15 18 syl5ib 0 = C A B A C B C
20 19 a1dd 0 = C A B A B A C B C
21 20 adantl C 0 = C A B A B A C B C
22 8 21 jaodan C 0 < C 0 = C A B A B A C B C
23 4 22 sylbi C 0 C A B A B A C B C
24 23 com12 A B C 0 C A B A C B C
25 24 3impia A B C 0 C A B A C B C
26 25 imp A B C 0 C A B A C B C