Metamath Proof Explorer


Theorem lemul2

Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005)

Ref Expression
Assertion lemul2 A B C 0 < C A B C A C B

Proof

Step Hyp Ref Expression
1 lemul1 A B C 0 < C A B A C B C
2 recn A A
3 recn C C
4 mulcom A C A C = C A
5 2 3 4 syl2an A C A C = C A
6 5 3adant2 A B C A C = C A
7 recn B B
8 mulcom B C B C = C B
9 7 3 8 syl2an B C B C = C B
10 9 3adant1 A B C B C = C B
11 6 10 breq12d A B C A C B C C A C B
12 11 3adant3r A B C 0 < C A C B C C A C B
13 1 12 bitrd A B C 0 < C A B C A C B