Metamath Proof Explorer


Theorem lemul2a

Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion lemul2a A B C 0 C A B C A C B

Proof

Step Hyp Ref Expression
1 lemul1a A B C 0 C A B A C B C
2 recn A A
3 recn C C
4 mulcom A C A C = C A
5 2 3 4 syl2an A C A C = C A
6 5 adantrr A C 0 C A C = C A
7 6 3adant2 A B C 0 C A C = C A
8 7 adantr A B C 0 C A B A C = C A
9 recn B B
10 mulcom B C B C = C B
11 9 3 10 syl2an B C B C = C B
12 11 adantrr B C 0 C B C = C B
13 12 3adant1 A B C 0 C B C = C B
14 13 adantr A B C 0 C A B B C = C B
15 1 8 14 3brtr3d A B C 0 C A B C A C B