Metamath Proof Explorer


Theorem lemuldiv

Description: 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006)

Ref Expression
Assertion lemuldiv A B C 0 < C A C B A B C

Proof

Step Hyp Ref Expression
1 ltdivmul2 B A C 0 < C B C < A B < A C
2 1 3com12 A B C 0 < C B C < A B < A C
3 2 notbid A B C 0 < C ¬ B C < A ¬ B < A C
4 simp1 A B C 0 < C A
5 gt0ne0 C 0 < C C 0
6 5 3adant1 B C 0 < C C 0
7 redivcl B C C 0 B C
8 6 7 syld3an3 B C 0 < C B C
9 8 3expb B C 0 < C B C
10 9 3adant1 A B C 0 < C B C
11 4 10 lenltd A B C 0 < C A B C ¬ B C < A
12 remulcl A C A C
13 12 3adant2 A B C A C
14 simp2 A B C B
15 13 14 lenltd A B C A C B ¬ B < A C
16 15 3adant3r A B C 0 < C A C B ¬ B < A C
17 3 11 16 3bitr4rd A B C 0 < C A C B A B C