Metamath Proof Explorer


Theorem lemuldiv2

Description: 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006)

Ref Expression
Assertion lemuldiv2 A B C 0 < C C A B A B C

Proof

Step Hyp Ref Expression
1 recn A A
2 recn C C
3 mulcom A C A C = C A
4 1 2 3 syl2an A C A C = C A
5 4 adantrr A C 0 < C A C = C A
6 5 3adant2 A B C 0 < C A C = C A
7 6 breq1d A B C 0 < C A C B C A B
8 lemuldiv A B C 0 < C A C B A B C
9 7 8 bitr3d A B C 0 < C C A B A B C