Metamath Proof Explorer


Theorem lemulge11

Description: Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005)

Ref Expression
Assertion lemulge11 A B 0 A 1 B A A B

Proof

Step Hyp Ref Expression
1 ax-1rid A A 1 = A
2 1 ad2antrr A B 0 A 1 B A 1 = A
3 simpll A B 0 A 1 B A
4 simprl A B 0 A 1 B 0 A
5 3 4 jca A B 0 A 1 B A 0 A
6 simplr A B 0 A 1 B B
7 1re 1
8 0le1 0 1
9 7 8 pm3.2i 1 0 1
10 6 9 jctil A B 0 A 1 B 1 0 1 B
11 5 3 10 jca31 A B 0 A 1 B A 0 A A 1 0 1 B
12 leid A A A
13 12 ad2antrr A B 0 A 1 B A A
14 simprr A B 0 A 1 B 1 B
15 13 14 jca A B 0 A 1 B A A 1 B
16 lemul12a A 0 A A 1 0 1 B A A 1 B A 1 A B
17 11 15 16 sylc A B 0 A 1 B A 1 A B
18 2 17 eqbrtrrd A B 0 A 1 B A A B