Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
lemulge11
Next ⟩
lemulge12
Metamath Proof Explorer
Ascii
Unicode
Theorem
lemulge11
Description:
Multiplication by a number greater than or equal to 1.
(Contributed by
NM
, 17-Dec-2005)
Ref
Expression
Assertion
lemulge11
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
A
≤
A
⁢
B
Proof
Step
Hyp
Ref
Expression
1
ax-1rid
⊢
A
∈
ℝ
→
A
⋅
1
=
A
2
1
ad2antrr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
A
⋅
1
=
A
3
simpll
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
A
∈
ℝ
4
simprl
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
0
≤
A
5
3
4
jca
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
A
∈
ℝ
∧
0
≤
A
6
simplr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
B
∈
ℝ
7
1re
⊢
1
∈
ℝ
8
0le1
⊢
0
≤
1
9
7
8
pm3.2i
⊢
1
∈
ℝ
∧
0
≤
1
10
6
9
jctil
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
1
∈
ℝ
∧
0
≤
1
∧
B
∈
ℝ
11
5
3
10
jca31
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
A
∈
ℝ
∧
0
≤
A
∧
A
∈
ℝ
∧
1
∈
ℝ
∧
0
≤
1
∧
B
∈
ℝ
12
leid
⊢
A
∈
ℝ
→
A
≤
A
13
12
ad2antrr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
A
≤
A
14
simprr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
1
≤
B
15
13
14
jca
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
A
≤
A
∧
1
≤
B
16
lemul12a
⊢
A
∈
ℝ
∧
0
≤
A
∧
A
∈
ℝ
∧
1
∈
ℝ
∧
0
≤
1
∧
B
∈
ℝ
→
A
≤
A
∧
1
≤
B
→
A
⋅
1
≤
A
⁢
B
17
11
15
16
sylc
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
A
⋅
1
≤
A
⁢
B
18
2
17
eqbrtrrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
0
≤
A
∧
1
≤
B
→
A
≤
A
⁢
B