Metamath Proof Explorer


Theorem lemulge11d

Description: Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1 φ A
divgt0d.2 φ B
lemulge11d.3 φ 0 A
lemulge11d.4 φ 1 B
Assertion lemulge11d φ A A B

Proof

Step Hyp Ref Expression
1 ltp1d.1 φ A
2 divgt0d.2 φ B
3 lemulge11d.3 φ 0 A
4 lemulge11d.4 φ 1 B
5 lemulge11 A B 0 A 1 B A A B
6 1 2 3 4 5 syl22anc φ A A B