Metamath Proof Explorer


Theorem leneg2d

Description: Negative of one side of 'less than or equal to'. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses leneg2d.1 φ A
leneg2d.2 φ B
Assertion leneg2d φ A B B A

Proof

Step Hyp Ref Expression
1 leneg2d.1 φ A
2 leneg2d.2 φ B
3 2 renegcld φ B
4 1 3 lenegd φ A B B A
5 2 recnd φ B
6 5 negnegd φ B = B
7 6 breq1d φ B A B A
8 4 7 bitrd φ A B B A