Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
lenegcon1
Next ⟩
lenegcon2
Metamath Proof Explorer
Ascii
Unicode
Theorem
lenegcon1
Description:
Contraposition of negative in 'less than or equal to'.
(Contributed by
NM
, 10-May-2004)
Ref
Expression
Assertion
lenegcon1
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
A
≤
B
↔
−
B
≤
A
Proof
Step
Hyp
Ref
Expression
1
renegcl
⊢
A
∈
ℝ
→
−
A
∈
ℝ
2
leneg
⊢
−
A
∈
ℝ
∧
B
∈
ℝ
→
−
A
≤
B
↔
−
B
≤
−
−
A
3
1
2
sylan
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
A
≤
B
↔
−
B
≤
−
−
A
4
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
5
4
negnegd
⊢
A
∈
ℝ
→
−
−
A
=
A
6
5
breq2d
⊢
A
∈
ℝ
→
−
B
≤
−
−
A
↔
−
B
≤
A
7
6
adantr
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
B
≤
−
−
A
↔
−
B
≤
A
8
3
7
bitrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
A
≤
B
↔
−
B
≤
A