Metamath Proof Explorer


Theorem lenegcon2

Description: Contraposition of negative in 'less than or equal to'. (Contributed by NM, 8-Oct-2005)

Ref Expression
Assertion lenegcon2 A B A B B A

Proof

Step Hyp Ref Expression
1 renegcl B B
2 leneg A B A B B A
3 1 2 sylan2 A B A B B A
4 recn B B
5 4 negnegd B B = B
6 5 adantl A B B = B
7 6 breq1d A B B A B A
8 3 7 bitrd A B A B B A