Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
lenegcon2
Next ⟩
lt0neg1
Metamath Proof Explorer
Ascii
Unicode
Theorem
lenegcon2
Description:
Contraposition of negative in 'less than or equal to'.
(Contributed by
NM
, 8-Oct-2005)
Ref
Expression
Assertion
lenegcon2
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
−
B
↔
B
≤
−
A
Proof
Step
Hyp
Ref
Expression
1
renegcl
⊢
B
∈
ℝ
→
−
B
∈
ℝ
2
leneg
⊢
A
∈
ℝ
∧
−
B
∈
ℝ
→
A
≤
−
B
↔
−
−
B
≤
−
A
3
1
2
sylan2
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
−
B
↔
−
−
B
≤
−
A
4
recn
⊢
B
∈
ℝ
→
B
∈
ℂ
5
4
negnegd
⊢
B
∈
ℝ
→
−
−
B
=
B
6
5
adantl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
−
B
=
B
7
6
breq1d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
−
−
B
≤
−
A
↔
B
≤
−
A
8
3
7
bitrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
−
B
↔
B
≤
−
A