Metamath Proof Explorer


Theorem lenegd

Description: Negative of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φ A
ltnegd.2 φ B
Assertion lenegd φ A B B A

Proof

Step Hyp Ref Expression
1 leidd.1 φ A
2 ltnegd.2 φ B
3 leneg A B A B B A
4 1 2 3 syl2anc φ A B B A