Metamath Proof Explorer


Theorem lenegsq

Description: Comparison to a nonnegative number based on comparison to squares. (Contributed by NM, 16-Jan-2006)

Ref Expression
Assertion lenegsq A B 0 B A B A B A 2 B 2

Proof

Step Hyp Ref Expression
1 recn A A
2 abscl A A
3 absge0 A 0 A
4 2 3 jca A A 0 A
5 1 4 syl A A 0 A
6 le2sq A 0 A B 0 B A B A 2 B 2
7 5 6 sylan A B 0 B A B A 2 B 2
8 absle A B A B B A A B
9 lenegcon1 A B A B B A
10 9 anbi1d A B A B A B B A A B
11 ancom A B A B A B A B
12 10 11 bitr3di A B B A A B A B A B
13 8 12 bitrd A B A B A B A B
14 13 adantrr A B 0 B A B A B A B
15 absresq A A 2 = A 2
16 15 breq1d A A 2 B 2 A 2 B 2
17 16 adantr A B 0 B A 2 B 2 A 2 B 2
18 7 14 17 3bitr3d A B 0 B A B A B A 2 B 2
19 18 3impb A B 0 B A B A B A 2 B 2