Metamath Proof Explorer


Theorem leneltd

Description: 'Less than or equal to' and 'not equals' implies 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
leltned.3 φ A B
leneltd.4 φ B A
Assertion leneltd φ A < B

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 leltned.3 φ A B
4 leneltd.4 φ B A
5 1 2 3 leltned φ A < B B A
6 4 5 mpbird φ A < B