Metamath Proof Explorer


Theorem lenlt

Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999)

Ref Expression
Assertion lenlt A B A B ¬ B < A

Proof

Step Hyp Ref Expression
1 rexr A A *
2 rexr B B *
3 xrlenlt A * B * A B ¬ B < A
4 1 2 3 syl2an A B A B ¬ B < A