Metamath Proof Explorer


Theorem lenlteq

Description: 'less than or equal to' but not 'less than' implies 'equal' . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses lenlteq.1 φ A
lenlteq.2 φ B
lenlteq.3 φ A B
lenlteq.4 φ ¬ A < B
Assertion lenlteq φ A = B

Proof

Step Hyp Ref Expression
1 lenlteq.1 φ A
2 lenlteq.2 φ B
3 lenlteq.3 φ A B
4 lenlteq.4 φ ¬ A < B
5 3 4 jca φ A B ¬ A < B
6 eqlelt A B A = B A B ¬ A < B
7 1 2 6 syl2anc φ A = B A B ¬ A < B
8 5 7 mpbird φ A = B