Metamath Proof Explorer


Theorem lenlteq

Description: 'less than or equal to' but not 'less than' implies 'equal' . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses lenlteq.1 φA
lenlteq.2 φB
lenlteq.3 φAB
lenlteq.4 φ¬A<B
Assertion lenlteq φA=B

Proof

Step Hyp Ref Expression
1 lenlteq.1 φA
2 lenlteq.2 φB
3 lenlteq.3 φAB
4 lenlteq.4 φ¬A<B
5 3 4 jca φAB¬A<B
6 eqlelt ABA=BAB¬A<B
7 1 2 6 syl2anc φA=BAB¬A<B
8 5 7 mpbird φA=B