Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
lenlti
Next ⟩
ltnlei
Metamath Proof Explorer
Ascii
Unicode
Theorem
lenlti
Description:
'Less than or equal to' in terms of 'less than'.
(Contributed by
NM
, 24-May-1999)
Ref
Expression
Hypotheses
lt.1
⊢
A
∈
ℝ
lt.2
⊢
B
∈
ℝ
Assertion
lenlti
⊢
A
≤
B
↔
¬
B
<
A
Proof
Step
Hyp
Ref
Expression
1
lt.1
⊢
A
∈
ℝ
2
lt.2
⊢
B
∈
ℝ
3
lenlt
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
↔
¬
B
<
A
4
1
2
3
mp2an
⊢
A
≤
B
↔
¬
B
<
A