Metamath Proof Explorer


Theorem lensymd

Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
lensymd.3 φ A B
Assertion lensymd φ ¬ B < A

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 lensymd.3 φ A B
4 1 2 lenltd φ A B ¬ B < A
5 3 4 mpbid φ ¬ B < A