Metamath Proof Explorer
Description: 'Less than or equal to' implies 'not less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019)
|
|
Ref |
Expression |
|
Hypotheses |
ltd.1 |
|
|
|
ltd.2 |
|
|
|
lensymd.3 |
|
|
Assertion |
lensymd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltd.1 |
|
2 |
|
ltd.2 |
|
3 |
|
lensymd.3 |
|
4 |
1 2
|
lenltd |
|
5 |
3 4
|
mpbid |
|