Metamath Proof Explorer


Theorem leord1

Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ltord.1 x = y A = B
ltord.2 x = C A = M
ltord.3 x = D A = N
ltord.4 S
ltord.5 φ x S A
ltord.6 φ x S y S x < y A < B
Assertion leord1 φ C S D S C D M N

Proof

Step Hyp Ref Expression
1 ltord.1 x = y A = B
2 ltord.2 x = C A = M
3 ltord.3 x = D A = N
4 ltord.4 S
5 ltord.5 φ x S A
6 ltord.6 φ x S y S x < y A < B
7 1 3 2 4 5 6 ltord1 φ D S C S D < C N < M
8 7 ancom2s φ C S D S D < C N < M
9 8 notbid φ C S D S ¬ D < C ¬ N < M
10 4 sseli C S C
11 4 sseli D S D
12 lenlt C D C D ¬ D < C
13 10 11 12 syl2an C S D S C D ¬ D < C
14 13 adantl φ C S D S C D ¬ D < C
15 5 ralrimiva φ x S A
16 2 eleq1d x = C A M
17 16 rspccva x S A C S M
18 15 17 sylan φ C S M
19 18 adantrr φ C S D S M
20 3 eleq1d x = D A N
21 20 rspccva x S A D S N
22 15 21 sylan φ D S N
23 22 adantrl φ C S D S N
24 19 23 lenltd φ C S D S M N ¬ N < M
25 9 14 24 3bitr4d φ C S D S C D M N