Metamath Proof Explorer


Theorem leordtval

Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses leordtval.1 A = ran x * x +∞
leordtval.2 B = ran x * −∞ x
leordtval.3 C = ran .
Assertion leordtval ordTop = topGen A B C

Proof

Step Hyp Ref Expression
1 leordtval.1 A = ran x * x +∞
2 leordtval.2 B = ran x * −∞ x
3 leordtval.3 C = ran .
4 1 2 leordtval2 ordTop = topGen fi A B
5 letsr TosetRel
6 ledm * = dom
7 1 leordtvallem1 A = ran x * y * | ¬ y x
8 1 2 leordtvallem2 B = ran x * y * | ¬ x y
9 df-ioo . = a * , b * y * | a < y y < b
10 xrltnle a * y * a < y ¬ y a
11 10 adantlr a * b * y * a < y ¬ y a
12 xrltnle y * b * y < b ¬ b y
13 12 ancoms b * y * y < b ¬ b y
14 13 adantll a * b * y * y < b ¬ b y
15 11 14 anbi12d a * b * y * a < y y < b ¬ y a ¬ b y
16 15 rabbidva a * b * y * | a < y y < b = y * | ¬ y a ¬ b y
17 16 mpoeq3ia a * , b * y * | a < y y < b = a * , b * y * | ¬ y a ¬ b y
18 9 17 eqtri . = a * , b * y * | ¬ y a ¬ b y
19 18 rneqi ran . = ran a * , b * y * | ¬ y a ¬ b y
20 3 19 eqtri C = ran a * , b * y * | ¬ y a ¬ b y
21 6 7 8 20 ordtbas2 TosetRel fi A B = A B C
22 5 21 ax-mp fi A B = A B C
23 22 fveq2i topGen fi A B = topGen A B C
24 4 23 eqtri ordTop = topGen A B C