Metamath Proof Explorer


Theorem leordtval2

Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses leordtval.1 A = ran x * x +∞
leordtval.2 B = ran x * −∞ x
Assertion leordtval2 ordTop = topGen fi A B

Proof

Step Hyp Ref Expression
1 leordtval.1 A = ran x * x +∞
2 leordtval.2 B = ran x * −∞ x
3 letsr TosetRel
4 ledm * = dom
5 1 leordtvallem1 A = ran x * y * | ¬ y x
6 1 2 leordtvallem2 B = ran x * y * | ¬ x y
7 4 5 6 ordtval TosetRel ordTop = topGen fi * A B
8 3 7 ax-mp ordTop = topGen fi * A B
9 snex * V
10 xrex * V
11 10 pwex 𝒫 * V
12 eqid x * x +∞ = x * x +∞
13 iocssxr x +∞ *
14 10 13 elpwi2 x +∞ 𝒫 *
15 14 a1i x * x +∞ 𝒫 *
16 12 15 fmpti x * x +∞ : * 𝒫 *
17 frn x * x +∞ : * 𝒫 * ran x * x +∞ 𝒫 *
18 16 17 ax-mp ran x * x +∞ 𝒫 *
19 1 18 eqsstri A 𝒫 *
20 eqid x * −∞ x = x * −∞ x
21 icossxr −∞ x *
22 10 21 elpwi2 −∞ x 𝒫 *
23 22 a1i x * −∞ x 𝒫 *
24 20 23 fmpti x * −∞ x : * 𝒫 *
25 frn x * −∞ x : * 𝒫 * ran x * −∞ x 𝒫 *
26 24 25 ax-mp ran x * −∞ x 𝒫 *
27 2 26 eqsstri B 𝒫 *
28 19 27 unssi A B 𝒫 *
29 11 28 ssexi A B V
30 9 29 unex * A B V
31 ssun2 A B * A B
32 fiss * A B V A B * A B fi A B fi * A B
33 30 31 32 mp2an fi A B fi * A B
34 fvex topGen fi A B V
35 ovex 0 +∞ V
36 ovex −∞ 1 V
37 35 36 unipr 0 +∞ −∞ 1 = 0 +∞ −∞ 1
38 iocssxr 0 +∞ *
39 icossxr −∞ 1 *
40 38 39 unssi 0 +∞ −∞ 1 *
41 mnfxr −∞ *
42 0xr 0 *
43 pnfxr +∞ *
44 mnflt0 −∞ < 0
45 0lepnf 0 +∞
46 df-icc . = x * , y * z * | x z z y
47 df-ioc . = x * , y * z * | x < z z y
48 xrltnle 0 * w * 0 < w ¬ w 0
49 xrletr w * 0 * +∞ * w 0 0 +∞ w +∞
50 xrlttr −∞ * 0 * w * −∞ < 0 0 < w −∞ < w
51 xrltle −∞ * w * −∞ < w −∞ w
52 51 3adant2 −∞ * 0 * w * −∞ < w −∞ w
53 50 52 syld −∞ * 0 * w * −∞ < 0 0 < w −∞ w
54 46 47 48 46 49 53 ixxun −∞ * 0 * +∞ * −∞ < 0 0 +∞ −∞ 0 0 +∞ = −∞ +∞
55 44 45 54 mpanr12 −∞ * 0 * +∞ * −∞ 0 0 +∞ = −∞ +∞
56 41 42 43 55 mp3an −∞ 0 0 +∞ = −∞ +∞
57 1xr 1 *
58 0lt1 0 < 1
59 df-ico . = x * , y * z * | x z z < y
60 xrlelttr w * 0 * 1 * w 0 0 < 1 w < 1
61 59 46 60 ixxss2 1 * 0 < 1 −∞ 0 −∞ 1
62 57 58 61 mp2an −∞ 0 −∞ 1
63 unss1 −∞ 0 −∞ 1 −∞ 0 0 +∞ −∞ 1 0 +∞
64 62 63 ax-mp −∞ 0 0 +∞ −∞ 1 0 +∞
65 56 64 eqsstrri −∞ +∞ −∞ 1 0 +∞
66 iccmax −∞ +∞ = *
67 uncom −∞ 1 0 +∞ = 0 +∞ −∞ 1
68 65 66 67 3sstr3i * 0 +∞ −∞ 1
69 40 68 eqssi 0 +∞ −∞ 1 = *
70 37 69 eqtri 0 +∞ −∞ 1 = *
71 fvex fi A B V
72 ssun1 A A B
73 eqid 0 +∞ = 0 +∞
74 oveq1 x = 0 x +∞ = 0 +∞
75 74 rspceeqv 0 * 0 +∞ = 0 +∞ x * 0 +∞ = x +∞
76 42 73 75 mp2an x * 0 +∞ = x +∞
77 ovex x +∞ V
78 12 77 elrnmpti 0 +∞ ran x * x +∞ x * 0 +∞ = x +∞
79 76 78 mpbir 0 +∞ ran x * x +∞
80 79 1 eleqtrri 0 +∞ A
81 72 80 sselii 0 +∞ A B
82 ssun2 B A B
83 eqid −∞ 1 = −∞ 1
84 oveq2 x = 1 −∞ x = −∞ 1
85 84 rspceeqv 1 * −∞ 1 = −∞ 1 x * −∞ 1 = −∞ x
86 57 83 85 mp2an x * −∞ 1 = −∞ x
87 ovex −∞ x V
88 20 87 elrnmpti −∞ 1 ran x * −∞ x x * −∞ 1 = −∞ x
89 86 88 mpbir −∞ 1 ran x * −∞ x
90 89 2 eleqtrri −∞ 1 B
91 82 90 sselii −∞ 1 A B
92 prssi 0 +∞ A B −∞ 1 A B 0 +∞ −∞ 1 A B
93 81 91 92 mp2an 0 +∞ −∞ 1 A B
94 ssfii A B V A B fi A B
95 29 94 ax-mp A B fi A B
96 93 95 sstri 0 +∞ −∞ 1 fi A B
97 eltg3i fi A B V 0 +∞ −∞ 1 fi A B 0 +∞ −∞ 1 topGen fi A B
98 71 96 97 mp2an 0 +∞ −∞ 1 topGen fi A B
99 70 98 eqeltrri * topGen fi A B
100 snssi * topGen fi A B * topGen fi A B
101 99 100 ax-mp * topGen fi A B
102 bastg fi A B V fi A B topGen fi A B
103 71 102 ax-mp fi A B topGen fi A B
104 95 103 sstri A B topGen fi A B
105 101 104 unssi * A B topGen fi A B
106 fiss topGen fi A B V * A B topGen fi A B fi * A B fi topGen fi A B
107 34 105 106 mp2an fi * A B fi topGen fi A B
108 fibas fi A B TopBases
109 tgcl fi A B TopBases topGen fi A B Top
110 fitop topGen fi A B Top fi topGen fi A B = topGen fi A B
111 108 109 110 mp2b fi topGen fi A B = topGen fi A B
112 107 111 sseqtri fi * A B topGen fi A B
113 2basgen fi A B fi * A B fi * A B topGen fi A B topGen fi A B = topGen fi * A B
114 33 112 113 mp2an topGen fi A B = topGen fi * A B
115 8 114 eqtr4i ordTop = topGen fi A B