Metamath Proof Explorer


Theorem lerec

Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 3-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lerec A 0 < A B 0 < B A B 1 B 1 A

Proof

Step Hyp Ref Expression
1 ltrec B 0 < B A 0 < A B < A 1 A < 1 B
2 1 ancoms A 0 < A B 0 < B B < A 1 A < 1 B
3 2 notbid A 0 < A B 0 < B ¬ B < A ¬ 1 A < 1 B
4 simpll A 0 < A B 0 < B A
5 simprl A 0 < A B 0 < B B
6 4 5 lenltd A 0 < A B 0 < B A B ¬ B < A
7 simprr A 0 < A B 0 < B 0 < B
8 7 gt0ne0d A 0 < A B 0 < B B 0
9 5 8 rereccld A 0 < A B 0 < B 1 B
10 simplr A 0 < A B 0 < B 0 < A
11 10 gt0ne0d A 0 < A B 0 < B A 0
12 4 11 rereccld A 0 < A B 0 < B 1 A
13 9 12 lenltd A 0 < A B 0 < B 1 B 1 A ¬ 1 A < 1 B
14 3 6 13 3bitr4d A 0 < A B 0 < B A B 1 B 1 A