Metamath Proof Explorer


Theorem lerec2

Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005)

Ref Expression
Assertion lerec2 A 0 < A B 0 < B A 1 B B 1 A

Proof

Step Hyp Ref Expression
1 gt0ne0 B 0 < B B 0
2 rereccl B B 0 1 B
3 1 2 syldan B 0 < B 1 B
4 recgt0 B 0 < B 0 < 1 B
5 3 4 jca B 0 < B 1 B 0 < 1 B
6 lerec A 0 < A 1 B 0 < 1 B A 1 B 1 1 B 1 A
7 5 6 sylan2 A 0 < A B 0 < B A 1 B 1 1 B 1 A
8 recn B B
9 recrec B B 0 1 1 B = B
10 8 1 9 syl2an2r B 0 < B 1 1 B = B
11 10 adantl A 0 < A B 0 < B 1 1 B = B
12 11 breq1d A 0 < A B 0 < B 1 1 B 1 A B 1 A
13 7 12 bitrd A 0 < A B 0 < B A 1 B B 1 A