Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
lerec2
Next ⟩
ledivdiv
Metamath Proof Explorer
Ascii
Unicode
Theorem
lerec2
Description:
Reciprocal swap in a 'less than or equal to' relation.
(Contributed by
NM
, 24-Feb-2005)
Ref
Expression
Assertion
lerec2
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
A
≤
1
B
↔
B
≤
1
A
Proof
Step
Hyp
Ref
Expression
1
gt0ne0
⊢
B
∈
ℝ
∧
0
<
B
→
B
≠
0
2
rereccl
⊢
B
∈
ℝ
∧
B
≠
0
→
1
B
∈
ℝ
3
1
2
syldan
⊢
B
∈
ℝ
∧
0
<
B
→
1
B
∈
ℝ
4
recgt0
⊢
B
∈
ℝ
∧
0
<
B
→
0
<
1
B
5
3
4
jca
⊢
B
∈
ℝ
∧
0
<
B
→
1
B
∈
ℝ
∧
0
<
1
B
6
lerec
⊢
A
∈
ℝ
∧
0
<
A
∧
1
B
∈
ℝ
∧
0
<
1
B
→
A
≤
1
B
↔
1
1
B
≤
1
A
7
5
6
sylan2
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
A
≤
1
B
↔
1
1
B
≤
1
A
8
recn
⊢
B
∈
ℝ
→
B
∈
ℂ
9
recrec
⊢
B
∈
ℂ
∧
B
≠
0
→
1
1
B
=
B
10
8
1
9
syl2an2r
⊢
B
∈
ℝ
∧
0
<
B
→
1
1
B
=
B
11
10
adantl
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
1
1
B
=
B
12
11
breq1d
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
1
1
B
≤
1
A
↔
B
≤
1
A
13
7
12
bitrd
⊢
A
∈
ℝ
∧
0
<
A
∧
B
∈
ℝ
∧
0
<
B
→
A
≤
1
B
↔
B
≤
1
A