Metamath Proof Explorer


Theorem lerecd

Description: The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1 φ A +
rpaddcld.1 φ B +
Assertion lerecd φ A B 1 B 1 A

Proof

Step Hyp Ref Expression
1 rpred.1 φ A +
2 rpaddcld.1 φ B +
3 1 rpregt0d φ A 0 < A
4 2 rpregt0d φ B 0 < B
5 lerec A 0 < A B 0 < B A B 1 B 1 A
6 3 4 5 syl2anc φ A B 1 B 1 A