Metamath Proof Explorer


Theorem lesub0

Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lesub0 A B 0 A B B A A = 0

Proof

Step Hyp Ref Expression
1 0red B 0
2 letri3 A 0 A = 0 A 0 0 A
3 1 2 sylan2 A B A = 0 A 0 0 A
4 ancom A 0 0 A 0 A A 0
5 simpr B A A
6 0red B A 0
7 simpl B A B
8 lesub2 A 0 B A 0 B 0 B A
9 5 6 7 8 syl3anc B A A 0 B 0 B A
10 7 recnd B A B
11 10 subid1d B A B 0 = B
12 11 breq1d B A B 0 B A B B A
13 9 12 bitrd B A A 0 B B A
14 13 ancoms A B A 0 B B A
15 14 anbi2d A B 0 A A 0 0 A B B A
16 4 15 syl5bb A B A 0 0 A 0 A B B A
17 3 16 bitr2d A B 0 A B B A A = 0