Metamath Proof Explorer


Theorem lesub1

Description: Subtraction from both sides of 'less than or equal to'. (Contributed by NM, 13-May-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lesub1 A B C A B A C B C

Proof

Step Hyp Ref Expression
1 simp1 A B C A
2 simp3 A B C C
3 simp2 A B C B
4 3 2 resubcld A B C B C
5 lesubadd A C B C A C B C A B - C + C
6 1 2 4 5 syl3anc A B C A C B C A B - C + C
7 3 recnd A B C B
8 2 recnd A B C C
9 7 8 npcand A B C B - C + C = B
10 9 breq2d A B C A B - C + C A B
11 6 10 bitr2d A B C A B A C B C