Metamath Proof Explorer


Theorem lesub2

Description: Subtraction of both sides of 'less than or equal to'. (Contributed by NM, 29-Sep-2005) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lesub2 A B C A B C B C A

Proof

Step Hyp Ref Expression
1 leadd2 A B C A B C + A C + B
2 simp3 A B C C
3 simp1 A B C A
4 2 3 readdcld A B C C + A
5 simp2 A B C B
6 lesubadd C + A B C C + A - B C C + A C + B
7 4 5 2 6 syl3anc A B C C + A - B C C + A C + B
8 2 recnd A B C C
9 3 recnd A B C A
10 5 recnd A B C B
11 8 9 10 addsubd A B C C + A - B = C - B + A
12 11 breq1d A B C C + A - B C C - B + A C
13 1 7 12 3bitr2d A B C A B C - B + A C
14 2 5 resubcld A B C C B
15 leaddsub C B A C C - B + A C C B C A
16 14 3 2 15 syl3anc A B C C - B + A C C B C A
17 13 16 bitrd A B C A B C B C A