Metamath Proof Explorer


Theorem lesubadd

Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 17-Nov-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion lesubadd A B C A B C A C + B

Proof

Step Hyp Ref Expression
1 simp1 A B C A
2 simp2 A B C B
3 1 2 resubcld A B C A B
4 simp3 A B C C
5 leadd1 A B C B A B C A - B + B C + B
6 3 4 2 5 syl3anc A B C A B C A - B + B C + B
7 1 recnd A B C A
8 2 recnd A B C B
9 7 8 npcand A B C A - B + B = A
10 9 breq1d A B C A - B + B C + B A C + B
11 6 10 bitrd A B C A B C A C + B