Metamath Proof Explorer


Theorem lesubadd2

Description: 'Less than or equal to' relationship between subtraction and addition. (Contributed by NM, 10-Aug-1999)

Ref Expression
Assertion lesubadd2 A B C A B C A B + C

Proof

Step Hyp Ref Expression
1 lesubadd A B C A B C A C + B
2 simp2 A B C B
3 2 recnd A B C B
4 simp3 A B C C
5 4 recnd A B C C
6 3 5 addcomd A B C B + C = C + B
7 6 breq2d A B C A B + C A C + B
8 1 7 bitr4d A B C A B C A B + C