Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Ordering on reals (cont.)
lesubaddi
Metamath Proof Explorer
Description: 'Less than or equal to' relationship between subtraction and addition.
(Contributed by NM , 30-Sep-1999) (Proof shortened by Andrew Salmon , 19-Nov-2011)
Ref
Expression
Hypotheses
lt2.1
⊢ A ∈ ℝ
lt2.2
⊢ B ∈ ℝ
lt2.3
⊢ C ∈ ℝ
Assertion
lesubaddi
⊢ A − B ≤ C ↔ A ≤ C + B
Proof
Step
Hyp
Ref
Expression
1
lt2.1
⊢ A ∈ ℝ
2
lt2.2
⊢ B ∈ ℝ
3
lt2.3
⊢ C ∈ ℝ
4
lesubadd
⊢ A ∈ ℝ ∧ B ∈ ℝ ∧ C ∈ ℝ → A − B ≤ C ↔ A ≤ C + B
5
1 2 3 4
mp3an
⊢ A − B ≤ C ↔ A ≤ C + B