Metamath Proof Explorer


Theorem letrd

Description: Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005)

Ref Expression
Hypotheses ltd.1 φ A
ltd.2 φ B
letrd.3 φ C
letrd.4 φ A B
letrd.5 φ B C
Assertion letrd φ A C

Proof

Step Hyp Ref Expression
1 ltd.1 φ A
2 ltd.2 φ B
3 letrd.3 φ C
4 letrd.4 φ A B
5 letrd.5 φ B C
6 letr A B C A B B C A C
7 1 2 3 6 syl3anc φ A B B C A C
8 4 5 7 mp2and φ A C