Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
letri
Next ⟩
le2tri3i
Metamath Proof Explorer
Ascii
Unicode
Theorem
letri
Description:
'Less than or equal to' is transitive.
(Contributed by
NM
, 14-May-1999)
Ref
Expression
Hypotheses
lt.1
⊢
A
∈
ℝ
lt.2
⊢
B
∈
ℝ
lt.3
⊢
C
∈
ℝ
Assertion
letri
⊢
A
≤
B
∧
B
≤
C
→
A
≤
C
Proof
Step
Hyp
Ref
Expression
1
lt.1
⊢
A
∈
ℝ
2
lt.2
⊢
B
∈
ℝ
3
lt.3
⊢
C
∈
ℝ
4
letr
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
≤
B
∧
B
≤
C
→
A
≤
C
5
1
2
3
4
mp3an
⊢
A
≤
B
∧
B
≤
C
→
A
≤
C